Simultaneous Off-Line Demand and Supply Calibration of Dynamic Traffic Assignment Systems

Ramachandran Balakrishna
Massachusetts Institute of Technology

Second Transportation Research Symposium
10th February 2006, Northeastern University
Motivation

• Dynamic traffic assignment (DTA) systems
 – Demand, supply processes and interactions
 • Several complex model components, algorithms
 – Large number of inputs and parameters

• Model parameters must reflect reality
 – Calibration aims at reducing error between system output and observed data
Literature Review

• Individual model component calibration
 – Demand
 • OD estimation (e.g. [4, 3, 1])
 – Supply
 • Sensor data fit locally (e.g. [12])
 • Limited applications of network-wide estimation (e.g. [9, 10])

• System-level calibration
 – Two-step process (e.g. [7, 6, 11, 5])
Methodology

\[
\text{Minimize } \sum_{h=1}^{H} \left[z_1(M_h, \hat{M}_h) + z_2(x_h, x^a_h) \right] + z_3(\beta, \beta^a)
\]

subject to:

\[
\hat{M}_h = f \left(x_1, \ldots, x_h, \beta, G_1, \ldots, G_h \right)
\]

• Advantages

 – Direct use of simulator output
 – Flexibility to include general traffic data
 – Simultaneous demand-supply estimation
 – Simultaneous OD estimation across time intervals
Problem Dimensions

• Complex DTA function f
 – Highly non-linear and non-analytical (simulator)
 – Potentially noisy
 • Unreliable gradients

• Very large scale in x, β
 – Demand parameters (OD flows) typically dominate
Solution

• Box Complex [2]
 – Span search space; locate potential optima

• SNOBFIT [8]
 – Stable Noisy Optimization by Branch and Fit
 – Refine search through local quadratic fitting

• Population-based global search
 – Gradient-free approach
Case Study

• Objectives
 – Demonstrate and evaluate calibration approach
 • Simultaneous temporal demand estimation
 • Simultaneous demand-supply estimation
 • Impact of speed data
 – Validate solution algorithm
 • Examine performance: sensitivity analysis
Network

- "Actual conditions": MITSIM
 - Flexible scenarios
 - 50 minutes (10 intervals)
 - Sensor data: counts, speeds

- Calibration
 - DynaMIT
 - Demand variables: OD flows, route choice
 - Supply parameters: capacities, speed-density function parameters
DynaMIT Overview

• Demand simulation
 – Dynamic OD flow estimation and prediction
 – Route choice and response to information

• Supply simulation
 – Queuing
 – Traffic dynamics

• Interactions
Estimators and MOE

- Reference estimator
 - Known demand, local supply parameter fitting
- Network-wide estimators

<table>
<thead>
<tr>
<th>Estimated Parameters</th>
<th>Calibration Data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Counts</td>
<td>Counts+Speeds</td>
</tr>
<tr>
<td>Supply (known Demand)</td>
<td>S_c</td>
<td>S_{cs}</td>
</tr>
<tr>
<td>Supply and Demand</td>
<td>SD_c</td>
<td>SD_{cs}</td>
</tr>
</tbody>
</table>

$$RMSE = \sqrt{\frac{1}{S} \sum_{i=1}^{S} (y_i - \hat{y}_i)^2}$$

y_i, \hat{y}_i: observed and fitted sensor data
S: total number of data points
Base Case

- Representative demand, supply situations
 - Route choice
 - Weaving and merging behavior
 - Incident
 - OD flow profiles:
Base Case Results

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Sensor Data Used for Calibration</th>
<th>Counts</th>
<th>Counts + Speeds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSE$_c$</td>
<td>RMSE$_s$</td>
</tr>
<tr>
<td>S</td>
<td></td>
<td>15.89 (7.6)</td>
<td>2.86 (25.7)</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td>15.87 (7.7)</td>
<td>3.02 (21.6)</td>
</tr>
</tbody>
</table>

Reference: RMSE$_c$ = 17.19, RMSE$_s$ = 3.85

S : Network-wide supply calibration
SD : Joint supply-demand calibration

() : Percent improvement over Reference

RMSE$_c$: root mean square error, counts
RMSE$_s$: root mean square error, speeds
Base Case Results

Estimated vs. “True” OD Flows
Base Case Results

Simulated vs. Actual Sensor Flows

![Graph showing simulated vs. actual sensor flows.](image)
Sensitivity Analysis

<table>
<thead>
<tr>
<th>Factor</th>
<th>Levels</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-1</td>
</tr>
<tr>
<td>Route choice</td>
<td>-0.01 (Time-insensitive)</td>
</tr>
<tr>
<td>OD spatial</td>
<td>Lower main flow</td>
</tr>
<tr>
<td></td>
<td>Higher side flow</td>
</tr>
<tr>
<td>OD temporal</td>
<td>Historical</td>
</tr>
<tr>
<td></td>
<td>(No variance)</td>
</tr>
<tr>
<td>Desired speed</td>
<td>Slower</td>
</tr>
</tbody>
</table>

Run Table

<table>
<thead>
<tr>
<th>Run</th>
<th>Route Choice</th>
<th>OD: Spatial</th>
<th>OD: Temporal</th>
<th>Desired Speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (Base)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>-1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>-1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>-1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>-1</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>
Sensitivity Analysis Results

Fit to Sensor Counts

![Bar Chart](chart.png)
Sensitivity Analysis Results

Fit to Sensor Speeds

![Graph showing Sensitivity Analysis Results]
Conclusion

- Network-wide supply calibration
- Speed data significant
- Simultaneous demand-supply estimation feasible, efficient
- Approach robust under various demand, supply conditions
- Current research: Application to real networks
References

References (cont’d)

References (cont’d)

