Regional Earthquake-Induced Derailment Risk: Overview and Current Modeling Issues

Second Transportation Student Research Symposium
Boston, MA

Lucile Guillaud, Candidate to the Master of Science in Transportation
Dept. of Civil and Environmental Engineering
MIT
Overview

- Regional vs. Local Estimation
- General Framework: Seismic Risk Estimation with examples from the railroad perspective
- Spatial Variability of Ground Motion and Consequences for Regional Estimation
- Earthquake-Induced Derailment Risk

Earthquake of April 29, 1965, Seattle, Washington. The magnitude 6.5 earthquake killed 7 and caused $12.5 million property damage.
Earthquake Engineering Saves Lives!

- **San Francisco, 1989**
 « 7.1 magnitude Loma Prieta earthquake occurred on October 17, 1989. The quake was responsible for 67 deaths »

 - 7.1 Richter Scale
 - 67 Dead

- **Armenia, 1989**
 « With most of Armenia covered in high-rise buildings the consequences have been devastating. »

 - 6.9 Richter Scale
 - 25,000 Dead
RegionaL vs. Local

Traditionally, Earthquake Risk Models for railroads consider the likelihood of events on a single segment. More generally, a “point-risk assessment” would evaluate the risk of failure along a track in isolation from the other tracks.

The regional approach must assess the likelihood of multiple events triggered simultaneously by the same triggering event – an earthquake – on different segments.
Regional vs. Local

Given an earthquake scenario (magnitude M, source x) the evaluation of the probability of such multiple-event scenarios depends on the degree of spatial correlation of ground motion severity, fragility, and exposure.

- **Ground Motion** (GM) variations: wave incoherence/spatial variability of GM, soil conditions…
- **Fragility**: Structural responses (bridges, tunnels, embankments…) and level of failures
- **Exposure**: ridership, locations (rural vs. urban areas), built environment…
Seismic Risk Analysis

General framework

- **Hazard Analysis**: Ground Motion predictions
 - Earthquake rates of Occurrence $P(M, x)$
 - Hazard at site: Given a scenario-earthquake (M, x), Prediction of ground motion accelerations $A = f(M, R, Soil)$

- **Vulnerability Functions**: probability of damage/failure of the structures, derailment… given different levels of Ground Motions.

- **Exposure**: number of passengers dependent on time of day, speed…

Seismic Risk = Seismic Hazard * Vulnerability * Exposure
Observation from closely-spaced seismograph arrays shows that earthquake ground accelerograms measured at different locations within the dimensions of typical structure are significantly different.
SVGM: Causes

- Wave Passage Effect: Temporal Incoherence
 - Arrival of seismic waves at different times at different stations (speed = 630km/s)

- Spatial Incoherence Effect
 - Superposition of waves from extended sources and scattered by irregularities and inhomogeneities along the path.

- Local-site effect
 - Alteration of the amplitudes and frequency content of the bedrock motion depending on the soil.

\[
\gamma_y(\omega) = \exp \left[-\left(\frac{\alpha \omega d_{ij}}{v_s} \right)^2 \right] \cdot \exp \left[i \frac{\omega d_i^L}{v_{app}} \right] \cdot \exp [i \theta_y(\omega)]
\]
SVGM: Causes

Coherency Function

\[\gamma_y(\omega) = \exp\left[-\left(\frac{\alpha \omega d_y}{\nu_s} \right)^2 \right] \exp\left[i \frac{\omega d_y^L}{v_{app}} \right] \exp\left[i \theta_y(\omega) \right] \]

- **Spatial incoherence**
 As \(d_{ij} \to 0\), the processes in \(i\) and \(j\) are identical (see Der Kiureghian, 1996, p. 103) \(d_{ij}=0\)

- **Temporal incoherence**
 Or “Wave passage effect”
 As \(d_{ij} \to 0\), no lag-time between processes (same arrival time) \(\tau = 0\)

- **Site Conditions**
 As \(d_{ij} \to 0\), the processes in \(i\) and \(j\) are identical (same soil...)

February 10, 2006 Lucile Guillaud, MIT
Modeling of SVGM

- SVGM can be modeled as an homogenous random field with cross Spectral Density Functions

\[S_{A_{track,t}}(\omega) = S_{A_{rock}} * g^2(t) * |H_{soil}(\omega)|^2 |H_{structure}(\omega)|^2 \]

\[\sigma^2_{A_{track,t}} = \int_{-\infty}^{+\infty} S_{A_{track,t}}(\omega) d\omega \]
SVGM Modeling Issues

Theoretical models for $H(w)_{\text{Soil}}$

- Engineering approach – MKT modified Kanai-Tajimi

$$|H_{\text{soil}}(\omega)|^2 = \frac{1 + 4\zeta_i^2\left(\frac{\omega}{\omega_i}\right)^2}{\left[1 - \left(\frac{\omega}{\omega_i}\right)^2\right]^2 + 4\zeta_i^2\left(\frac{\omega}{\omega_i}\right)^2} * \frac{\left(\frac{\omega}{\omega_f}\right)^4}{\left[1 - \left(\frac{\omega}{\omega_f}\right)^2\right]^2 + 4\zeta_f^2\left(\frac{\omega}{\omega_f}\right)^2}$$

Ground acceleration histories can be synthetically generated from the modified Kanai-Tajimi power spectral density function.

The shortcoming of this method is that except for the site conditions, it does not integrate various factors affecting ground motion, such as Magnitude, M, and distance to source, R.

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>f_i</th>
<th>ζ_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard rock</td>
<td>5</td>
<td>0.8</td>
</tr>
<tr>
<td>Stiff</td>
<td>3</td>
<td>0.6</td>
</tr>
<tr>
<td>Medium</td>
<td>1.5</td>
<td>0.4</td>
</tr>
<tr>
<td>Soft</td>
<td>0.5</td>
<td>0.2</td>
</tr>
</tbody>
</table>
SVGM Modeling Issues

- **Theoretical models for** $H(w)_{\text{Soil}}$

- **Physical approach** (Boore, 2003)

One of the essential characteristic of the physical approach is that it takes into account those factors affecting ground motions (source, path, and site) into unique functional form.

$$H(f, M, R)_{\text{Soil}} = CM_0 A_0(f) P_1(R, f) V_2(f) D_3(f) I(f)$$

Source $A_0(f)$

$$A_0(f) = \left(1 - \varepsilon \right) \left(f/f_a \right)^2 + \varepsilon \left(f/f_b \right)^2$$

Attenuation $P_1(R, f) = G(R) \exp(Q(R, f))$

$$G(R) = \begin{cases}
\frac{1}{R} & R < 40 \text{km} \\
\frac{1}{40} \sqrt{\frac{40}{R}} & R > 40 \text{km}
\end{cases}$$

$$Q(R, f) = \exp\left(-\frac{\pi R}{180 f^{0.45}}\right)$$

The spectrum decays with distance due to Geometric spreading $G(R)$ and anelastic attenuation $Q(R, f)$

Crustal Amplification $V_2(f)$

Near surface attenuation (kappa operator)

$$D_3(f) = \exp(-\pi f k)$$

Type of Ground Motion $I(f)$

$$|I(f)|^2 = \frac{\left(f/f_{st}\right)^4}{1 + \left(f/f_{st}\right)^4 + 2\left(2\zeta_{st}^2 - 1\right)\left(f/f_{st}\right)^2}$$
SVGM Modeling Issues

Theoretical Model Structure:

\[|H(w)|_{structure}^2 = \frac{1 + 4\xi_{st}^2 (\frac{f}{f_{structure}})^2}{\left(1 - (\frac{f}{f_{structure}})^2\right)^2 + 4\xi_{structure}^2 (\frac{f}{f_{structure}})^2} \]

Obtention of ground motion

\[\sigma_{track,x}^2 (fst) = \int_{-\infty}^{+\infty} S_{track,x} (\omega) d\omega = \int_{-\infty}^{+\infty} |H(w)|_{soil=rock}^2 |H(w)|_{structure}^2 \]

\[A_{max \: theo} (\omega_{st}) = c(\omega_{st}) \sqrt{\sigma_{track,x}^2} \]

\[c(\omega_{st}) = \sqrt{2 \ln(2.8 \times \omega_{st} \times 5)} \]

The coherency function is added to the transfer functions \(H_s \).

February 10, 2006

Lucile Guillaud, MIT
Seismic Risk Analysis: Derailments

- **Vulnerability:** for our study concerning railroad risks, vulnerability to derailment may be caused by different failures:
 - **Causes:**
 Given an earthquake scenario \((M, x)\), different Derailment causes are investigated. Trains may derail during the strong phase of the ground motion – derailment due to shaking - due to excessive acceleration and/or relative rail deformation. They may also derail after the motion has ended due to permanent rail deformation or failure of the soil or the supporting structure.
Earthquake-Induced Derailments

- Causes
 - Damage of the track
 - Shaking
 - Acceleration of the track
 - Acceleration due to relative displacement
 - Structure/Soil failure – bridge – embankment
Current Research

- Implement SVGM into the vulnerability analysis:
 - Calibrating the theoretical model so that it matches the actual data (empirical attenuations relationship)

- Develop a consequence model at a regional level
Questions!

Research in collaboration with

Pr. Veneziano
Department of Civil and Environmental Engineering

Pr. Sussman
Department of Civil and Environmental Engineering
Engineering System Division

Massachusetts Institute of Technology