DESIGN AND IMPLEMENTATION OF A FLEXIBLE TRANSPORTATION SYSTEM

Second Annual Transportation Student Research Symposium
Northeastern University
February 10, 2006

Joshua McConnell
Major Points

• Flexibility is one way to address uncertainty in complex systems
 – Need to ensure benefits of flexibility are inline with costs
• Flexibility over the entire system life-cycle must be addressed
• System should be architected with the following considerations in mind:
 – Physical system flexibility
 – Execution Implementation
 – Addressing downside and upside uncertainty
 – Information gathering to promote institutional learning
 – Enabling additional policy choices
• Choice of system architecture, institutional architecture, and technology is critical in accomplishing these objectives
Agenda

• Transportation and complex systems
• Uncertainty
• Flexibility and Real options
• ITS and ITS as a real option
• Case studies
 – Case I: Infrastructure vs ITS as a real option
 – Case II: Congestion pricing architecture
Transportation Systems and Common Challenges

Factors considered here:
Technical: congestion
Uncertainty: demand / congestion
Economic: costs and benefits
Implementation: political resistance
Complex Systems

Nested Complexity

- Many subsystems
- Unknown relationships
- Time scales
- Non-linear effects
- Large system
- Difficult to quantify and reach agreement
- **Difficult to predict future behavior**
Types of Uncertainty in Transportation Systems: Some Examples

Many types of uncertainty exist in transportation systems, making decisions concerning future status difficult.

- **Technical**: demand/congestion, mode share, technology availability/development
- **Economic**: costs and benefits, economic activity, funding availability
- **Political**: political support or resistance, political objectives and priorities
- **External**: security
Strategies for Addressing Uncertainty

Luckily, some strategies exist!

- **Reduce or control uncertainty**
 - Increase information and knowledge of system
 - Reduce system complexity
 - Manage demand

- **Increase robustness**
 - Increased capacity / less sensitivity to uncertainty

- **Design in flexibility**
 - Ability to alter system configuration, based on future circumstances
Overview of Flexibility

• What is flexibility?
 – Ability to change the future configuration of a system, i.e. postpone final configuration of system until a future date when additional information is available

• Why flexibility?
 – Flexibility adds value to the system, allowing the system to adapt to future circumstances

• Flexibility is not for free!
 – In general flexible system has higher up front costs than non-flexible system
 – General costs include:
 • Purchase price: Money to buy flexibility
 • Exercise price: Money to use or activate flexibility in operations
 • Transaction costs: Increased complexity in design and management
Real Options: Tool for Providing Flexibility

- Real options – similar to financial options, but applied to “real” asset design and management
- Gives option owner the right, but not the obligation to take some action now or at future date at a predetermined price
- Can be crafted to take advantage of “good times” (calls) and/or limit exposure in “bad times” (puts)
- Real options deal with the “unknowns” – recognized sources of uncertainty
Valuing ITS

Total value of ITS = inherent ITS value + value of flexibility in ITS

• Inherent ITS value
 – Technical – ability to manage and coordinate operation
 – Economic – typically substantially lower capital costs than traditional infrastructure
 – Travelers – increases traveler level of service
Value from using ITS in Flexible Manner

• ITS as a real option sub-set of real options
• Provide flexibility to transportation system, some examples….
 – Delay infrastructure construction
 – Provide means to gather new information
 – Provide ability to expand or contract system based on future needs and events
 – Can be structured to create non-traditional opportunities
 – Functionality can be introduced in phases or as modules
Case I: Build vs ITS Option: Purpose

- Illustrate quantitative benefits of flexibility – deal with downside uncertainty
- Fully evaluating benefits from ITS
Alternatives: No Flexibility

Current State

Possible Future States

- What to do? Infrastructure highest NPV, ITS highest B/C
- NPV and B/C only show Expected Value – significant probability of loss if no future congestion \(\rightarrow\) 40%
Analysis of Alternatives

<table>
<thead>
<tr>
<th></th>
<th>EX NPV</th>
<th>Benefit to Cost Ratio</th>
<th>EX Benefits</th>
<th>EX Costs</th>
<th>Prob.</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trad. Infra.</td>
<td>$6M</td>
<td>1.25</td>
<td>$30M</td>
<td>$24M</td>
<td>High cong = .6</td>
<td>High cong = $50 M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low cong = .4</td>
<td>Low cong = $0 M</td>
</tr>
<tr>
<td>ITS</td>
<td>$0.5</td>
<td>1.33</td>
<td>$2M</td>
<td>$1.5M</td>
<td>High cong = .6</td>
<td>High cong = $3.3 M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low cong = .4</td>
<td>Low cong = $0 M</td>
</tr>
<tr>
<td>Status Quo</td>
<td>-$10M</td>
<td>n/a</td>
<td>-$10M</td>
<td>0</td>
<td>High cong = .6</td>
<td>High cong = -$17 M</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Low cong = .4</td>
<td>Low cong = $0 M</td>
</tr>
</tbody>
</table>
Re-valuing ITS to Account for Flexibility

Current situation, t<0

- ITS has lower costs, reducing capital at risk at t=0.
- Decision for larger investment postponed when additional information or funding is available

Implement alternative, t=0

Exercise option, t>0

ITS option to Delay infrastructure
Re-valuing ITS to Account for Flexibility

- New expected NPV of ITS = $13M, value of ITS + infra = $2.7M
- Flexibility = $13M - $2.7M = $10.3M
 - $10.3M flexibility value > $5M cost, so flexibility economically feasible
 - Value from ITS: EX inherent value = $2M, Value of flexibility = $10.3M

EX NPV = $6 M
B/C = 1.25

EX NPV = $13 M
B/C = 1.3

EX NPV = -$10 M
B/C = NA
New Decision Tree
(perfect information assumed)

<table>
<thead>
<tr>
<th>Infrastructure</th>
<th>ITS Option</th>
<th>Status Quo</th>
</tr>
</thead>
<tbody>
<tr>
<td>high p = .6</td>
<td>$50M - $24M</td>
<td>high p = .6</td>
</tr>
<tr>
<td>low p = .4</td>
<td>$0M - $24M</td>
<td>low p = .4</td>
</tr>
</tbody>
</table>

Extra $5M construction cost for delay, work around existing ITS

$10.3M flexibility value > $5M cost, so flexibility economically feasible

Value from ITS: EX inherent value = $2M, Value of flexibility = $10.3M

- New expected NPV of ITS = $13M, value of ITS + infra = $2.7M
- Flexibility = $13M - $2.7M = $10.3M
Case II: Congestion Pricing: Purpose

- Impact of system architecture on:
 - Up and downside uncertainty
 - Implementation
 - Non-transportation benefits
Case II: Congestion Pricing: ITS Decision Tree

Current State: Heavy Congestion

- Full Congestion Pricing System
- Managed lanes (i.e. HOT) Possibly Leading to Congestion Pricing
- No Additional Capabilities, maintain HOT lanes

Switch operation to alternative managed lane type (i.e. BRT or freight)

- Full Congestion Pricing System
- Switch
- Maintain

Flexibility Created in System

Architecture – expand from network of HOT lanes to congestion pricing system

Operation – switch operation of managed lanes; i.e. from HOT to BRT or freight lanes
Case II: Congestion Pricing: Alternative ITS as a Real Option Architectures

Which technology and architecture to choose?
Case II: Congestion Pricing: Some Issues to Consider

• **System efficiency and effectiveness**
 – Is infrastructure and operations adequate to handle needed levels of traffic?
 – Is system cost effective?

• **Flexibility technical issues**
 – What does flexible system architecture look like?
 – Is flexibility useful?

• **Flexibility non-technical issues**
 – Can flexibility be used in system? i.e. if flexibility requires system change will stakeholders resist changes in system? If so, what can be done to overcome this resistance?
Case II: Congestion Pricing: Stakeholder Resistance

Stakeholders resistant to ITS as a real option

Stakeholders supportive to ITS as a real option

= No exercise of ITS options

How to make this transition?

= Exercise of ITS options…?
Case II: Congestion Pricing: Creating a Winning Stakeholder Coalition through Technology Choices

Can technology and architecture be designed to appeal to broader stakeholder coalition?

One way is through dual use technologies

Camera Based Architecture
Can appeal to security minded stakeholders, al la Chicago

Smartcard Based Architecture
Can appeal to private industry, with dual use as banking cards, parking cards, health information, etc.
Tying it all Together

• Flexibility is one way to address uncertainty in complex systems
 – Need to ensure benefits of flexibility are inline with costs
• Flexibility over the entire system life-cycle must be addressed
• System should be architected with the following considerations in mind:
 – Physical system flexibility
 – Execution Implementation
 – Addressing downside and upside uncertainty
 – Information gathering to promote institutional learning
 – Enabling additional policy choices
• Choice of system architecture, institutional architecture, and technology is critical in accomplishing these objectives